why you should use 5GHz WiFi instead of 2.4GHz
Way back when Wi-Fi first came out, there were two versions that you could chose from: 802.11a and 802.11b. From a consumer perspective, there wasn’t much difference between the two. Devices based on 802.11b were generally less expensive and more readily available than those based on 802.11a, so the b specification quickly became the consumer standard. 802.11b operates in the 2.4GHz spectrum. These days, it’s getting pretty crowded, and to help address the digital noise that comes with it, 5GHz WiFi is making a comeback.
802.11a (2.4GHz) 802.11a was a standard in 1999 which promised to bring network connections to devices delivered over the air instead of through copper cables. It was built around the 5GHz spectrum, but failed to gain much traction in the market.
Being the “first” Wi-Fi protocol, it faced a steep learning curve and deployment problems which delayed the deployment of 802.11a networks. Also, components that operate on 5GHz were generally more expensive and harder to come by than 2.4GHz components.
802.11b (2.4GHz) During this phase of 802.11a’s “growing pains”, the 802.11b specification was being worked on. It offered basically the same features as 802.11a, but used less expensive and more readily available components.
Due to these factors, 802.11b saw significant adoption amongst home and small-office users, whereas 802.11a only saw any level of “success” in enterprise network environments. Popularity of Wi-Fi began to grow, and the standards that backed it continued to improve.
802.11g (2.4GHz) By 2003 a new standard had been ratified, though many devices were using the 802.11g draft specification prior to the date that it was made “official”. This version of the Wi-Fi standard brought many of the stability-features of 802.11a and the inexpensive componentry of 802.11b, improved upon them, and upped the speed to 54Mbps.
Consumers were thrilled, and this is still one of the more popular versions of Wi-Fi available today. Unfortunately, it still uses the 2.4GHz spectrum, which, as you might have suspected, is getting pretty crowded now that all these Wi-Fi devices are operating on the same frequencies.
Bluetooth, Microwaves, & Wireless Peripherals Almost everyone has a microwave in their house. Some of them emit some of the radiation used to warm up your pizza
outside of the unit. No, it’s not
supposed to do that, but some do, especially as they get older and components start to break down. In addition to being harmful to your health, there “spurious emissions” cause bursts of noise around the 2.4GHz spectrum that can severely interfere with your wireless signal. If you find that you’re in this situation, you might want to consider replacing your microwave oven!
Bluetooth used to be limited to headsets and other special-use equipment, but as its feature-set increased, devices using Bluetooth increased too — and not just in number, but in the bandwidth they use and the amount of time they’re turned on! Bluetooth speakers and docks are a good example of this, though wearables are quickly becoming more commonplace as well.
Keyboards, mice, trackpads, and trackballs can use Bluetooth to connect, and even those that use their own proprietary wireless hardware are typically still using 2.4GHz.
802.11n (2.4GHz or 5GHz) When 802.11n came around in 2009 it brought with it the ability to communicate up to 600Mbps. What’s more, 802.11n also included the ability to work in either the 2.4GHz or 5Ghz spectra. Like the other standards before it, 802.11n was backwards compatible with its predecessors. Unfortunately, since most devices already on the market were already using 2.4GHz, most 802.11n wireless access points stuck to 2.4GHz as the primary operating frequency, and some devices didn’t even include the hardware to use 5Ghz at all.
Some let you pick between 2.4GHz and 5GHz operation (not both), but since most people still had some 2.4GHz devices they kept their networks on 2.4GHz rather than making the switch across the board.
802.11ac (2.4 and 5GHz) 802.11ac was ratified in January 2014, but devices based on the draft specification were available for months prior. This standard brings the maximum data rates up to 1Gbps (almost double that of 802.11n). In most 802.11ac wireless access points,
both 2.4GHz and 5GHz hardware is included, though most segregate the traffic from each onto its own network.
Advantages of 5GHz Finally users can take advantage of the reduced noise available in the 5GHz spectrum. This will provide faster data rates, fewer disconnects, and a more enjoyable experience. (It may even help you run faster and jump higher, but that study is still pending.)
Bluetooth and other wireless peripherals aren’t going to bother you in the 5GHz spectrum so there’s less interference. Microwaves don’t operate up here (not even newer ones), so that source of noise is eliminated, too.
There are many more reasons why 802.11ac is better than others, but this article is about switching to the 5GHz spectrum, rather than about 802.11ac specifically. With a compatible router or WAP, your 802.11n 0r 802.11ac smartphone or tablet will work much, much better. With a stronger the signal and faster the throughput, less power is required to get your signal above the noise floor, which should result in better battery life in addition to better network performance.
Not all of your devices are going to have 5GHz compatibility built-in, those will still work every bit as well as they did before on 2.4GHz, but will work even better now that you’ll be offloading traffic from that network and putting onto your 5GHz network.
Lastly, there are some potential disadvantages. Given the same power, the higher the frequency, the shorter the distance a signal can travel. That means your signal may not travel as far as it would have on a 2.4GHz network.
Since the signals may not travel as far, that means you may not have as much interference from neighbors as you would have on 2.4GHz. Neither will your neighbors (which could very well be a major advantage to both you and them). Another potential advantage is that 5GHz signals may be able to get into places that 2.4GHz couldn’t reach because of the size of their waveforms.
All in all, I’d highly recommend that you upgrade your router or WAP to 802.11ac and set up both 2.4GHz and 5GHz networks, then move as much of your wireless traffic to the 5GHz side as possible. You’ll have less noise, less interference, better speeds, a more stable connection, and possibly even better battery life. What more could you want?
المفضلات