Íá æÇÌÈÇÊ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ
Íá æÇÌÈÇÊ ÇáÌÇãÚå ÇáÚÑÈíÉ ÇáãÝÊæÍå ãÚ ÇáÔÑÍ
áÌãíÚ ÝÑæÚ ÇáÌÇãÚÉ æáÌãíÚ ÇáÊÎÕÕÇÊ æáÌãíÚ ÇáãæÇÏ

Íáæá äãæÐÌíÉ ãÖãæäÉ æÛíÑ ãßÑÑÉ - ÞÓã ÎÇÕ ááÊÑÈíÉ

KSA-Kuwait - Bahrain -Oman - Jordon -Lebanon -Egypt-Sudan

ÇáßæíÊ ÇáÈÍÑíä ÚãÇä ÇáÃÑÏä áÈäÇä ãÕÑ ÇáÈÍÑíä ÍÇÆá ÇáÑíÇÖ ÇáÏãÇã ÌÏÉ ÇáãÏíäÉ ÇáãäæÑÉ ÇáÇÍÓÇÁ
(.turnitin./ ) ÝÍÕ ÇáÊÔÇÈå æÝÞÇ áäÙÇã ÇáÌÇãÚÉ Úä ØÑíÞ ãæÞÚ ßÔÝ ÇáÊÔÇÈå

ÇÊÕá : - OO966542495275

æÇÊÓ ÇÈ: 00966542495275+

Çíãíá : [email protected]


Íá æÇÌÈ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ


Íá æÇÌÈÇÊ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ 00966542495275
Çíãíá : [email protected]

æÇÊÓ ÇÈ: OO966.5.4.2.4.9.5.2.7.5

[/SIZE]




Íá æÇÌÈMT132 Íáæá æÇÌÈÇÊMT132 ÔÑÍ æÇÌÈMT132 tmaA MT132




MT132 (M132): Linear Algebra
Tutor Marked Assignment

The TMA covers only chapters 1 and 2. It consists of 4 questions, each question is worth 10 marks. Please solve each question in the space provided. You should give the details of your solutions and not just the final results.

Q−1: Answer each of the following as True or False justifying your answers:
a) [2 marks] If |A| = 1, then AX = O could have more than one solution.
b) [2 marks] Any square matrix A can be written as a sum of symmetric and skew-symmetric matrices.
c) [2 marks] If A is an n×n nonsingular matrix, then A5AT is also nonsingular matrix.
d) [2 marks] If A is an n×n nonsingular matrix such that A-1 = A, then A10 = In.
e) [2 marks] If X1, X2 and X3 are linearly dependent vectors in R3, then X3 is a linear combination of X1 and X2.

Q−2: Consider the linear system: .
a) [3 marks] Find |A|, A is the coefficient matrix for the linear system.
b) [2 marks] If possible, find the inverse of A.
c) [3 marks] Solve the linear system.
d) [2 marks] Change the third equation in the linear system to x  y + z = 0. Is the new linear system consistent? Explain your answer.
Q¬−3: Let .
a) [6 marks] Find the matrix A.
b) [4 marks] Find |2A3ATA-1|.

Q−4: Let be a set of vectors in R3.
a) [4 marks] Determine whether the vectors in S are linearly independent.
b) [6 marks] Write, if possible, the vector as a linear combination of the vectors in S.



ßæÑÓÇÊ MT132

ÔÑÍ MT132


...Íá æÇÌÈ MT132 -00966542495275 -

MT132 TMA 00966542495275 MT132 Íá æÇÌÈÇÊ MT132 ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ

Íá æÇÌÈ MT132 ** <00966542495275 > MT132 Íáæá,æÇÌÈÇÊ,ÇáÌÇãÚÉ,ÇáÚÑÈíÉ,ÇáãÝÊæÍÉ

#Íá_æÇÌÈ MT132 Íá æÇÌÈÇÊ MT132 ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ

MT132 æÇÌÈ MT132, æÇÌÈÇÊ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ

MT132 TMA Answers. Íá æÇÌÈ MT132 00966542495275

Íá , æÇÌÈ , MT132 < Íáæá æÇÌÈÇÊ ÇáÌÇãÚÜÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ






Íá æÇÌÈÇÊ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ
Íá æÇÌÈÇÊ ÇáÌÇãÚå ÇáÚÑÈíÉ ÇáãÝÊæÍå ãÚ ÇáÔÑÍ
áÌãíÚ ÝÑæÚ ÇáÌÇãÚÉ æáÌãíÚ ÇáÊÎÕÕÇÊ æáÌãíÚ ÇáãæÇÏ

Íáæá äãæÐÌíÉ ãÖãæäÉ æÛíÑ ãßÑÑÉ - ÞÓã ÎÇÕ ááÊÑÈíÉ

KSA-Kuwait - Bahrain -Oman - Jordon -Lebanon -Egypt-Sudan

ÇáßæíÊ ÇáÈÍÑíä ÚãÇä ÇáÃÑÏä áÈäÇä ãÕÑ ÇáÈÍÑíä ÍÇÆá ÇáÑíÇÖ ÇáÏãÇã ÌÏÉ ÇáãÏíäÉ ÇáãäæÑÉ ÇáÇÍÓÇÁ
(.turnitin./ ) ÝÍÕ ÇáÊÔÇÈå æÝÞÇ áäÙÇã ÇáÌÇãÚÉ Úä ØÑíÞ ãæÞÚ ßÔÝ ÇáÊÔÇÈå

ÇÊÕá : - OO966542495275

æÇÊÓ ÇÈ: 00966542495275+

Çíãíá : [email protected]


Íá æÇÌÈ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ


Íá æÇÌÈÇÊ ÇáÌÇãÚÉ ÇáÚÑÈíÉ ÇáãÝÊæÍÉ 00966542495275
Çíãíá : [email protected]

æÇÊÓ ÇÈ: OO966.5.4.2.4.9.5.2.7.5

[/SIZE]